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Abstract. An aggregate signature (AS) scheme allows an unspecified
aggregator to compress many signatures into a short aggregation. AS
schemes can save storage costs and accelerate verification. They are de-
sirable for applications where many signatures need to be stored, trans-
ferred, or verified together, including blockchain systems, sensor net-
works, certificate chains, network routing, etc. However, constructing
AS schemes based on general groups, only requiring the hardness of the
discrete logarithm problem, is quite tricky and has been a long-standing
research question. Recently, Chalkias et al. [6] proposed a half-aggregate
scheme for Schnorr signatures. We observe the scheme lacks a tight secu-
rity proof and does not well support incremental aggregation, i.e., adding
more signatures into a pre-existing aggregation.
This work’s contributions are threefold. We first give a tight security
proof for the scheme in [6] in the ROM and the algebraic group model
(AGM). Second, we provide a new half-aggregate scheme for Schnorr
signatures that perfectly supports incremental aggregation, whose secu-
rity also tightly reduces to Schnorr’s security in the AGM+ROM. Third,
we present a Schnorr-based sequential aggregate signature (SAS) scheme
that is tightly secure as Schnorr signature scheme in the ROM (without
the AGM). Our work may pave the way for applying Schnorr aggregation
in real-world cryptographic applications.

1 Introduction

The notion of aggregate signatures (AS) was proposed by Boneh et al. [5]. As
a type of signature scheme, an AS scheme additionally allows an aggregator to
compress an arbitrary number of individual signatures into a short aggregation.
One can verify the validity of all those individual signatures by verifying the ag-
gregate signature. The signers do not need to interact, and the aggregator can be
an arbitrary one. AS schemes are very useful in applications where many signa-
tures need to be stored, transferred, or verified together. Traditional application
scenarios of AS schemes include sensor networks, software authentication [1],
secure logging [16], etc. They can also be applied to blockchain systems like Bit-
coin, e.g., to aggregate the signatures for multiple transactions to an aggregated
one for improving throughput and reducing verification time.

Lysyanskaya et al. [19] proposed a useful variant of aggregate signatures, se-
quential aggregate signatures (SAS). In an SAS scheme, the signatures can only
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be compressed sequentially. Specifically, a signer additionally gets a pre-existing
aggregation as its input and directly produces a new aggregation based on the
pre-existing one. Unlike traditional AS schemes, the signature aggregation can-
not be made publicly by anyone but the signers involved in the SAS scheme.
SAS schemes are suitable for applications like certificate chains, routing pro-
tocols, and secure logging. In these scenarios, the signatures are produced and
passed in order, and a signer always knows the previous aggregation. For exam-
ple, in a hierarchical public key infrastructure, a certificate on a user’s public
key consists of a chain of certificates issued by multiple certification authorities
(CAs). Each CA certifies the CA at the next level, and the deepest CA directly
certifies the user.

Boneh et al. pointed out in their seminal work [5] that the aggregation can
be incrementally performed in their scheme. That is, the aggregator can add
individual signatures into a pre-existing aggregation. In this work, we refer to AS
schemes with such a feature as incremental aggregate signature (IAS) schemes.

In SAS schemes, the aggregation is naturally performed incrementally one-
by-one. However, the feature of incremental aggregation is unspecified in the
definition of AS schemes. Hence, AS schemes are not strictly stronger than SAS
schemes, but IAS schemes can serve as both of them.

Most of the previous AS/SAS schemes are based on bilinear maps [3,5,17,18]
and trapdoor permutations [19]. Some proposals work in the synchronized model
[1, 11]. Constructing AS/SAS schemes based on general groups, only requiring
the hardness of discrete logarithm problem (DLP), is quite tricky and is a long-
standing question.

Recently, Chalkias et al. [6] provided an aggregate scheme for Schnorr sig-
natures. We refer to their scheme as ASchnorr and Schnorr signature scheme as
Schnorr for presentation simplicity. ASchnorr achieves “half-aggregation” rather
than “full-aggregation”, i.e., the total size is compressed a half, rather than
to a constant size. The authors provided some evidence of the impossibility of
fully aggregating Schnorr signatures. Anyhow, half-aggregation of Schnorr sig-
natures still significantly reduces the storage, so it is very useful and timely as
Schnorr signature was enforced in Bitcoin (and many other blockchain systems)
in November of 2021 with the Taproot update [24].

We observe two problems of ASchnorr. In [6], ASchnorr’s security is reduced
to Schnorr’s security in the random oracle model (ROM), and hence can be fur-
ther reduced to the hardness of DLP. The first problem is that the reduction
has a quadratic loss, due to the reliance on rewinding. The authors suggested
ignoring the quadratic loss when setting parameters for ASchnorr in practice,
just as people do for Schnorr. But for deploying ASchnorr in reality, particularly
in cryptocurrency systems like Bitcoin, we may want more confidence in its secu-
rity. They also designed another aggregate scheme, referred to as TightASchnorr.
TightASchnorr permits a tight security reduction in the ROM but is relatively
expensive in both space and time. Specifically, it achieves (half+ϵ)-aggregation
rather than half-aggregation, where ϵ = O(λ/ log λ) with λ as the security pa-
rameter. It also has a costly aggregating procedure and makes the verification
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slower than verifying the batch of individual signatures one by one. Whether
there exists half-aggregate schemes for Schnorr signatures that is tightly secure
as Schnorr is a fundamental question to explore.

Second, ASchnorr does not support incremental aggregation well. In partic-
ular, it suffers from ambiguity and redundant operations. By “ambiguity” we
mean the verifier cannot correctly verify an aggregation without knowing how it
was produced (namely, whether and when incremental aggregation happened).
Without the feature of incremental aggregation, only when all the signatures
are received the aggregator can start the aggregation. In reality, particularly
in asynchronous distributed systems, signatures are usually not produced and
transferred at the same time. It is more convenient to perform the aggrega-
tion with part of the signatures and incrementally aggregate the others when
they arrive. Incremental aggregation is especially important for fault tolerance
in asynchronous systems. In such applications, there may exist both faulty nodes
and delayed honest nodes. An aggregator should not assume that every node will
eventually provide a valid signature. It should start aggregating when it receives
some signatures rather than keep waiting, but later it may need to add delayed
signatures to the aggregation. Moreover, non-incremental AS schemes cannot
serve as SAS schemes, so they may not applicable in scenarios like certificate
chains and network routing. Hence, incremental aggregation is crucial for prac-
tical use. Many schemes based on bilinear maps naturally support incremental
aggregation, so the property is rarely mentioned explicitly in the previous works.
However, this is not the case for Schnorr signature aggregation.

1.1 Contributions

The contributions of this work are threefold. For the first problem of ASchnorr
about security tightness, we further justify its security. We reduce the security
of ASchnorr to the security of Schnorr with a tight bound in the ROM and the
algebraic group model (AGM) [9]. The AGM is similar to while weaker than the
generic group model (GGM) [20,23]. In the AGM, we only consider adversaries
as algebraic algorithms. This is reasonable, for no attack is so far known to be
significantly more efficient than such algorithms on elliptic curve groups. The
AGM is widely applied in security proofs for cryptographic schemes, including
blind signatures [10] and multi-signatures [2].

For the second problem about incremental aggregation, our solution is a new
half-aggregation scheme, referred to as IASchnorr. IASchnorr perfectly supports
incremental signature aggregation. It no more suffers from ambiguity and redun-
dant operations. It also permits a tight security reduction in the AGM+ROM.

Our third contribution is an SAS scheme, referred to as SASchnorr. We tightly
reduce its security to Schnorr’s security in the ROM (without the AGM). Unlike
tightASchnorr proposed in [6], our scheme SASchnorr achieves half-aggregation,
and it does not increase the verification time. On one hand, SASchnorr is the
first to achieve half-aggregation of Schnorr signatures with a tight security proof
in the ROM. On the other hand, as ASchnorr cannot serve as an SAS scheme
while keeping secure in the ROM, SASchnorr is also the first to achieve sequential
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half-aggregation of Schnorr signatures with an (even non-tight) security proof in
the ROM.

Tight security analysis of ASchnorr and the construction of IASchnorr pave the
way for applying Schnorr aggregation in distributed ledger systems like Bitcoin,
and IASchnorr may be best applicable in these application scenarios. SASchnorr
may not be appropriate directly in so many scenarios as IASchnorr, but it is useful
in many other applications like certificate chains, network routing, and secure
logging. It achieves (sequential) half-aggregation of Schnorr signatures with a
tight security reduction in the ROM, which is of theoretical interest. Meanwhile,
getting rid of loose security bounds and the AGM could also be desirable for
real-world cryptography.

2 Preliminaries

2.1 Aggregate Signatures

An aggregate signature (AS) scheme AS consists of five algorithms KGen, Sign,
Vf, Agg, and AggVf. The first three algorithms KGen, Sign, and Vf constitute a
traditional signature scheme. The signature scheme must be complete for AS to
be complete. Algorithm Agg takes as inputs an arbitrary number of signatures
σ1, ..., σn, corresponding messages m1, ..., mn and public keys pk1, ..., pkn and
outputs an aggregate signature σ̃. Algorithm AggVf takes as inputs an aggregate
signature σ̃, messages m1, ..., mn, and public keys pk1, ..., pkn and outputs 0 or
1, representing σ̃ is valid or not. The completeness requirement here is that: if
some signatures are correctly generated with Sign, then their aggregation must
be verified as valid on/under corresponding messages/public keys.

An incremental aggregate signature (IAS) scheme is an AS scheme that ad-
ditionally contains an algorithm IncrAgg. Algorithm IncrAgg takes as inputs an
existing aggregate signature σ̃, corresponding messages m1, . . . , mn and public
keys pk1, . . . , pkn, an arbitrary number of individual signatures σn+1, . . . , σn′ ,
and corresponding messages mn+1, . . . , mn′ and public keys pkn+1, . . . , pkn′

and outputs a new aggregation σ̃′. The completeness requirement here is that:
if some signatures are correctly generated with Sign, then their aggregation, no
matter how they are aggregated (incrementally or not), must be verified as valid
on/under corresponding messages/public keys.

Security. Boneh et al. [5] defined the existential unforgeability under chosen-
message attacks (EUF-CMA) [12] of AS schemes in the aggregate chosen-key
model. We abbreviate the EUF-CMA security in this model as CK-AEUF-CMA.
The CK-AEUF-CMA game consists of three stages defined as follows:

Setup. The forger F is given a public key pk∗ generated by KGen.
Queries The forger F has access to a signing oracle. It can adaptively requests

signatures under pk∗ on messages of its choice.
Response. The forger F outputs an arbitrary number n of public keys pk1, ...,

pkn, n messages m1, ..., mn, and an aggregate signature σ̃ .
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We say F wins this game if σ̃ is a valid aggregate signature on m1, ..., mn under
pk1, ..., pkn, there exists k ∈ {1, . . . , n} such that pkk = pk∗, and F has not
queried mk to the signing oracle.

In this work, we only consider the security in the ROM, and the security
results for AS schemes in this work are independent of the maximum number of
aggregated signatures. We say a forger F (t, qH1

, . . . , qHl
, qS, ε)-breaks the CK-

AEUF-CMA security of an AS scheme AS in the ROM if: F runs in time at most
t; F makes at most qH1 , . . . , qHl

queries respectively to the random oracles H1,
. . . , Hl modeling the hash functions used in AS; F makes at most qS queries to
the signing oracle; and F wins the CK-AEUF-CMA game with probability at
least ε.

2.2 Sequential Aggregate Signatures

A sequential aggregate signature (SAS) scheme SAS consists of three algorithm
KGen, SeqSign, and Vf. Algorithms KGen and Vf are the same as the ones in
a normal signature scheme. Algorithm SeqSign takes an existing aggregate sig-
nature σ̃n−1, corresponding messages m1, . . . , mn−1 and public keys pk1, . . . ,
pkn−1, a secret key skn, and a message mn as inputs and outputs a new aggre-
gation σ̃n. With n = 1, the behavior of SeqSign is the same as algorithm Sign in
a normal signature scheme, and it indeed constitutes a normal scheme together
with KGen and Vf. The completeness requirement is that: if a sequential aggre-
gate signature is generated correctly by sequentially running SeqSign multiple
times, then it must be verified as valid on/under corresponding messages/public
keys.

Security. Lysyanskaya et al. [19] defined the EUF-CMA security in the se-
quential aggregate chosen-key model (CK-SAEUF-CMA) for SAS schemes. We
introduce the security notion here, while we will prove the security of our scheme
in a modified model which we will define later in Section 5.2. The three-stage
CK-SAEUF-CMA game is defined as follows:

Setup. The forger F is given a public key pk∗ generated by KGen.
Queries The forger F has access to a signing oracle. It can adaptively requests

signatures under pk∗ on messages, existing aggregations, and previous public
keys and messages of its choice.

Response. The forger F outputs an arbitrary number n of public keys pk1, ...,
pkn, n messages m1, ..., mn, and a sequential aggregate signature σ̃ .

We say F wins this game if σ̃ is a valid aggregate signature on m1, ..., mn under
pk1, ..., pkn, there exists k such that pkk = pk∗, and F has not queried mk

together with previous public keys and messages {(pk1,m1), . . . , (pkk−1,mk−1)}.
Note it is allowed to query mk with another set of previous public keys and
messages.

We say a forger F (t, qH1
, . . . , qHl

, qS, N, ε)-breaks the CK-SAEUF-CMA se-
curity of an SAS scheme SAS in the ROM if: F runs in time at most t; F makes
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KGen()

x←$Zp

X := gx

sk := x

pk := X

return (sk, pk)

Sign(sk,m)

x := sk;X := gx

r←$Zp;R := gr

c := H1(R,m)

s := r + cx

return σ := (c, s)

Vf(pk,m, σ)

X := pk

(c, s) := σ

R := gs/Xc

return JH1(R,m) = cK
Fig. 1. Description of Schnorr signatures. The cyclic group G, of order p with a gener-
ator g and the hash functions H1 are scheme-level parameters.

at most qH1
, . . . , qHl

queries respectively to the random oracles H1, . . . , Hl mod-
eling the hash functions used in SAS; F makes at most qS queries to the signing
oracle; F gives a forged sequential aggregate signature of length at most N ; and
F wins the CK-SAEUF-CMA game with probability at least ε.

2.3 Algebraic Group Model

The algebraic group model (AGM) is an ideal model proposed in [9]. In the AGM,
we require the adversary to provide the representations of any group elements
it outputs as a product of the elements it received. The AGM lies between the
generic group model (GGM) [20, 23] and the realistic world. While the GGM is
useful for proving information-theoretical bounds, the AGM is useful for making
reductions.

To be more specific, consider a multiplicative group. Let X1, . . . , Xn be
group elements provided to the adversary as inputs or from oracles. For any
group element Y it outputs or queries to oracles, it also gives a representation
of Y , i.e., a vector (α1, . . . , αn) satisfying that Y =

∏n
i=1 X

αi
i .

2.4 Schnorr Signatures

In Fig. 1, we present Schnorr signature scheme in its traditional (c, s)-format [22],
while nowadays it is also common to deploy its (R, s) variant on elliptic groups.
For instance, the (R, s) version of Schnorr signature scheme was standardized as
EdDSA [4]. Bitcoin also chose the (R, s) version [24].

Schnorr signature in the (c, s)-format is more compact than its (R, s)-format
over integer groups, but the difference is relatively small over elliptic curve
groups [14]. Practical elliptic curves of order p with log p = 2λ can offer approx-
imately λ bits of security, and the points over these groups can be represented
by about 2λ bits (to be precise, 2λ+1 bits). In practice, it is safer to use a hash
function H1 with 2λ-bit outputs for λ-bit security, which avoids some subtle
fragile caused by shorter hashes. For example, such a full-length hash function
can computationally bind the signature to the corresponding message, which is
increasingly important for applications like blockchain [6]. In short, the point R,
the scalar s, and the hash value c all have a size of about 2λ bits.
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Agg({(pk1,m1, σ1), . . . , (pkn,mn, σn)})

for i = 1, . . . , n do

Xi := pki

(ci, si) := σi

Ri := gsi/Xci

L := {(R1, X1,m1), . . . , (Rn, Xn,mn)}
for i = 1, . . . , n do

ai := H2(L, i)

s̃ :=

n∑
i=1

aisi

return σ̃ := ({R1, . . . , Rn}, s̃)

AggVf({(pk1,m1), . . . , (pkn,mn)}, σ̃)

for i = 1, . . . , n do

Xi := pki

({R1, . . . , Rn}, s̃) := σ̃

L := {(R1, X1,m1), . . . , (Rn, Xn,mn)}
for i = 1, . . . , n do

ci := H1(Ri,mi)

ai := H2(L, i)

return Jgs̃ =

n∏
i=1

(RiX
ci
i )aiK

Fig. 2. Description of ASchnorr. The cyclic group G, of order p with a generator g, and
the hash functions H1 and H2 are scheme-level parameters. The range of H2 is denoted
by H2.

3 Half-Aggregation of Schnorr Signatures, Revisited

3.1 Scheme Description

In this section, we analyze the security of ASchnorr, the half-aggregate scheme for
Schnorr signatures in [6], in the AGM+ROM. Fig. 2 describes the scheme, with
a slight difference that we consider individual signatures in the (c, s)-format, as
presented in Fig. 1. H1 and H2 are hash functions to Zp, and we use H2 to denote
the range of H2.

On signatures (c1, s1), . . . , (cn, sn), respectively on messages m1, . . . , mn un-
der public keys X1, . . . , Xn , algorithm Agg recovers R1, . . . , Rn. Then it com-
putes n coefficients a1, . . . , an and aggregates the responses into s̃ =

∑n
i=1 aisi.

In the aggregate signature, R1, . . . , Rn replace c1, . . . , cn. To verify an aggre-
gate signature, algorithm Vf also computes these coefficients and checks whether
gs̃ =

∏n
i=1(RiX

ci
i )ai , where ci = H1(Ri,mi).

The scheme certainly works well with signatures in the (R, s)-format. Actu-
ally, the two formats are mathematically equivalent, and the scheme essentially
recovers R and aggregates the (R, s) signatures.

Let λ be the security parameter. As discussed in Section 2.4, we consider
the case that R, c, and s are all approximately 2λ-bit long. Then n individual
signatures are about 2n · 2λ bits of total length, while the aggregation of these
signatures is only about (n + 1) · 2λ bits of length as discussed above. In this
case, ASchnorr compresses the signatures to roughly half the original size. For
instance, consider the widely applied curve secp256k1 and the hash function
SHA256 for about 128 bits of security. The order p of secp256k1 is of 32 bytes. A
point over secp256k1 is usually represented by 32 bytes (represent the x-ordinate)
plus one more bit (indicating the sign of its y-coordinate). SHA256 gives 32-byte
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outputs. Then ASchnorr compresses n individual signatures, of 64n byte length,
into (32(n+ 1) + n/8) byte length.

One needs to compute 2n+1 exponentiations to verify an aggregate signature,
while it takes 2 exponentiations to verify each individual signature. Although
we do not reduce the number of exponentiations, AggVf can be significantly
speed up by applying the simultaneous exponentiation techniques [8, 13, 15]. It
was estimated in [25] that verifying an aggregate signature using simultaneous
exponentiation techniques is about 72% faster than sequentially verifying the
individual signatures. The benchmarks in [6] also support this estimation. Note
that ASchnorr only reduces the verification time of signatures in the (c, s)-format,
because (R, s) signatures support batch verification, which is also essentially
computing 2n+ 1 simultaneous exponentiations.

3.2 Security in the AGM+ROM

We prove the CK-AEUF-CMA security of ASchnorr with a tight bound in the
AGM+ROM, where the hash function H2 is modeled as a random oracle, based
on the EUF-CMA security of Schnorr. In comparison, the bound in the ROM
suffers from a quadratic loss, for the proof is based on rewinding. In the CK-
AEUF-CMA game against ASchnorr, a forger has accesses to a signing oracle
Sign and the random oracle H2.

Theorem 1. If there exists a forger that (t, qH2
, qS, ε)-breaks the CK-AEUF-

CMA security of ASchnorr in the AGM+ROM with H2 modeled as a random
oracle, then there exists an algorithm that (t′, qS, ε′)-breaks the EUF-CMA secu-
rity of Schnorr with t′ = O(t) and ε′ ≥ ε− (qH2 + 1)/|H2|.

Proof. Suppose that F is the forger that (t, qH2
, qS, ε)-breaks the CK-AEUF-

CMA security of ASchnorr. We construct an algorithm A to break the EUF-
CMA security of Schnorr. On the target public key X∗, A first initializes an
empty table T [·, ·] for simulating random oracle H2. After that, it runs F with
X∗ as the target public key. Algorithm A handles queries from F as follows:

– Signing queries. On query Sign(m) from F , A queries m to its own signing
oracle in the EUF-CMA game. It receives a signature (c, s) and returns it to
F .

– H2 queries. On query H2(L, k) from F , A assigns T [L, k]←$H2 if T [L, k] is
undefined and then returns T [L, k] to F .

As the AGM requires, whenever F queries or outputs a group element, it
should also provide the representation of the element as a product of those
elements given to it, i.e., the generator g and the target public key X∗. We
assume A never gets two different representations of the same element, otherwise
it can directly compute the discrete logarithm of X∗.

At last, F outputs a forged aggregate signature ({R1, . . . , Rn}, s̃) together
with the corresponding messages m1, . . . , mn and public keys X1, . . . , Xn it
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chooses. F also outputs a representation of each group element. Precisely, A gets
2n pairs (α1,1, β1,1), . . . , (α1,n, β1,n), (α2,1, β2,1), . . . , (α2,n, β2,n) satisfying

Ri = gα1,iX∗β1,i and Xi = gα2,iX∗β2,i

for i = 1, . . . , n. Let ci = H1(Ri,mi) for i = 1, . . . , n.
If there exists k such that Xk = X∗ and β1,k + ckβ2,k = 0, which we call

Case 1, then we have
RkX

∗ck = gα1,k+ckα2,k .

Thus, A obtains a forged Schnorr signature (Rk, α1,k + ckα2,k) on mk and wins
the EUF-CMA game if mk is fresh (i.e., has not been queried to the signing
oracle).

We further consider the case that β1,k + ckβ2,k ̸= 0 for all k that satisfies
Xk = X∗, which we call Case 2. Let L = {(R1, X1,m1), . . . , (Rn, Xn,mn)} and
ai = H2(L, i) for i = 1, . . . , n. It must hold that gs̃ =

∏n
i=1(RiX

ci
i )ai for F to

win. Let

α∗ =

n∑
i=1

ai(α1,i + ciα2,i) and β∗ =

n∑
i=1

ai(β1,i + ciβ2,i).

It can be verified that
∏n

i=1(RiX
ci
i )ai = gα

∗
X∗β∗ , and consequently gs̃ =

gα
∗
X∗β∗ . Therefore, A can extract the discrete logarithm (s̃ − α∗)/β∗ of X∗

as long as β∗ ̸= 0. It can further produce signatures on any message it chooses
and certainly win the EUF-CMA game.

To be exact, to compute α∗ and β∗, A only needs to let ai = T [L, i] for
every i satisfying RiX

ci
i ̸= 1G, where 1G denotes the identity in G (otherwise

ai is irrelevant). If anyone of those items is undefined, then A just aborts. Here
we show that F is almost impossible to win in such a case. Suppose T [L, i]
was undefined when F decides its forgery. We regard it as the last one to be
determined. Since RiX

ci
i ̸= 1G, there is at most one value of ai = T [L, i] in H2

can make gs̃ =
∏n

i=1(RiX
ci
i )ai . Hence, F wins with probability at most 1/|H2|.

Now let us show that A can win the EUF-CMA game in one of the above
two cases (by extracting a forged signature or directly computing the discrete
logarithm of X∗) with high probability. To do so, we define an event AggElim,
explain how it relates to A’s winning, and bound its probability.

We say AggElim occurs if there exists L = {(R1, X1,m1), . . . , (Rn, Xn,mn)}
satisfying the following conditions:

– Let I be the set of those i satisfying RiX
ci
i ̸= 1G, where ci = H1(Ri,mi).

The condition is that for each i ∈ I, T [L, i] has been defined.
– Let (α1,i, β1,i) and (α2,i, β2,i) be the representations of Ri and Xi respec-

tively. Let β∗
i = β1,i + ciβ2,i. The condition is that there exists k ∈ I such

that β∗
k ̸= 0.

–
∑

i∈I T [L, i]β∗
i = 0.

If F wins, but A does not go to Case 1 (and then extract a forged signature),
does not abort because of undefined table items, and also does not win in Case 2
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(by directly computing the discrete logarithm of X∗), then AggElim must happen.
Conditioned on F ’s winning, there must exist k such that X∗ = Xk and mk is
fresh. Since A does not go to Case 1, it must hold that βi,k + ckβ2,k ̸= 0, and
hence the second condition holds. That A does not abort because of undefined
table items implies the first condition. Recall the definition of β∗, and we can
see if A does not win in Case 2 (only when β∗ = 0), the third condition holds.

Among those i ∈ I satisfying β∗
i ̸= 0, consider the last ai to be determined.

There is at most one value from H2 can make L satisfy the third condition. This
means AggElim happens with probability at most 1/|H2| for each L occurring in
table T . The total probability of AggElim is thus upper bounded by qH2

/|H2|.
Now we can bound the probability ε′ that A wins the EUF-CMA game.

Consider the case F wins. We assume A does not win in the first way. It then
loses the game only if it aborts for undefined table items or β∗ = 0, respectively
bounded by 1/|H2| and qH2/|H2|. Therefore, we have ε′ ≥ ε− (qH2 + 1)/|H2|.

It remains to bound the running time t′ of A. Except the running time t of
F , there are two significant parts of t′ we need to consider: maintaining table T
and handling H2 queries and the final forgery. Assuming that a table operation
takes constant time, the first part takes O(qH2

) which is also O(t). The second
part of time is O(t), for the forger needs to write the queries and the forgery all.
In conclusion, we have t′ ≤ O(t). ⊓⊔

Remark 1 (Security of aggregating signatures in the (R, s)-format). Compared
to signatures in the (R, s)-format, the (c, s)-format slightly simplifies the proof
in the AGM, since forger F does not get other group elements than g and X∗.
Nevertheless, it is easy to adapt our proof to (R, s) signatures. Let (R̂j , ŝj) be
the signature that F receives in the j-th signing query Sign(m̂j). In addition to
g and X∗, it can also use R̂1, . . . , R̂qS to represent the group elements it queries
or outputs. Let ĉj = H1(R̂j , m̂j). By the validity of signatures, R̂j = gŝj/X∗ĉj

for j = 1, . . . , qS. Hence, since A knows how to represent each R̂j with g and
X∗, it essentially gets a representation with g and X∗ of each group element
that F queries or outputs. The rest of the proof remains.

4 Incremental Aggregation of Schnorr Signatures

4.1 Scheme Description

In the real world, it is common that we need to store more signatures after
we have produced an aggregation, which leads to the demand for incremental
aggregation. However, ASchnorr does not support incremental aggregation well.
The procedure of incremental aggregating is not explicitly defined at the scheme
level. We can implement it by treating a pre-existing aggregation as a normal
signature, but this causes ambiguity and redundant operations. We can omit
some redundant computations, but the ambiguity comes from the scheme in-
trinsically. Following ASchnorr, if we aggregate n′ signatures, we will compute
coefficients a1, . . . , an′ . If we aggregate the first n signatures among them, we
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IncrAgg(L, σ̃, L′)

// L = {(pk1,m1), . . . , (pkn,mn)}

// L
′
= {(pkn+1,mn+1, σn+1), \\

// . . . , (pkn′ ,mn′ , σn′ )}

for i = 1, . . . , n′ do Xi := pki

({R1, . . . , Rn}, s̃) := σ̃

for i = n+ 1, . . . , n′ do

(ci, si) := σi

Ri := gsi/Xci
i

Li := {(R1, X1,m1), . . . , (Ri, Xi,mi)}
ai := H2(Li)

s̃′ := s̃+

n′∑
i=n+1

aisi

return σ̃′ := ({R1, . . . , Rn′}, s̃′)

AggVf({(pk1,m1), . . . , (pkn,mn)}, σ̃)

for i = 1, . . . , n do Xi := pki

({R1, . . . , Rn}, s̃) := σ̃

a1 := 1; c1 := H1(R1,m1)

for i = 2, . . . , n do

ci := H1(Ri,mi)

Li := {(R1, X1,m1), . . . , (Ri, Xi,mi)}
ai := H2(Li)

return Jgs̃ =

n∏
i=1

(RiX
ci
i )aiK

Fig. 3. Algorithms IncrAgg and AggVf of IASchnorr. The cyclic group G, of order p
with a generator g, and the hash functions H1 and H2 are scheme-level parameters.
The range of H2 is denoted by H2. The aggregate algorithm Agg is a special case of
IncrAgg.

will compute coefficients a′1, . . . , a′n. The scheme-level ambiguity is reflected by
that usually ai ̸= a′i for i = 1, . . . , n. Hence, a verifier has to know whether the
first n signatures are aggregated first, or aggregated together with the others.
Otherwise, it can not correctly verify the aggregation of the n′ signatures.

For such a problem, we provide a modified scheme IASchnorr, described in
Fig. 3. See how we remove the ambiguity: the coefficient ai for the i-th signature
only depends on the first i signatures. As a result, whether the first n signatures
are aggregated first or together with the others does not affect the value of
the coefficients. The normal scheme Schnorr (i.e., algorithms KGen, Sign, and
Vf) is unchanged, so Fig. 3 only describes algorithms IncrAgg and AggVf. The
aggregate algorithm Agg can be seen as a special case of IncrAgg when n = 0.

4.2 Security
We can easily prove almost the same security result for IASchnorr as ASchnorr
in the AGM+ROM. The proof is very similar to the one of Theorem 1, so we
defer it to the full version of this paper [7].
Theorem 2. If there exists a forger that (t, qH2

, qS, ε)-breaks the CK-AEUF-
CMA security of aggregate signature scheme IASchnorr in the AGM+ROM with
H2 modeled as a random oracle, then there exists an algorithm that (t′, qS, ε

′)-
breaks the EUF-CMA security of Schnorr with t′ = O(t) and ε′ ≥ ε − (qH2

+
1)/|H2|.
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SeqSign(L, σ̃n−1, skn,mn)

// L = {(pk1,m1), . . . , (pkn−1,mn−1)}

for i = 1, . . . , n− 1 do Xi := pki

(R̃n−1, {s1, . . . , sn−1}) := σ̃n−1

xn := skn; Xn := gxn

rn ←$Zp; Rn := grn

R̃n = R̃n−1 ·Rn

cn := H(R̃n, Xn,mn, sn−1, n)

sn := rn + cnxn

return σ̃n := (R̃n, {s1, . . . , sn})

Vf({(pk1,m1), . . . , (pkn,mn)}, σ̃n)

for i = 1, . . . , n do Xi := pki

(R̃n, {s1, . . . , sn}) := σ̃n

cn := H(R̃n, Xn,mn, sn−1, n)

if n = 1 then return Jgs1 = R̃1X
c1
1 K

else

Rn := gsn/Xcn
n

R̃n−1 := R̃n/Rn

σ̃n−1 := (R̃n−1, {s1, . . . , sn−1})
return Vf(L′, σ̃n−1)

// L
′
= {(pk1,m1), . . . , (pkn−1,mn−1)}

Fig. 4. Description of SASchnorr. The cyclic group G, of order p with a generator g,
and the hash function H are scheme-level parameters. The range of H is denoted by
H. The key generation algorithm KGen is the same as Schnorr’s, as described in Fig. 2.
We define s0 as always 0.

5 Sequential Aggregation of Schnorr Signatures with
Tight Reduction in the ROM

5.1 Scheme Discription

We describe SASchnorr in Fig. 4. The aggregation is implemented in a very
different way in SASchnorr compared with the other schemes: we aggregate the
commitment parts of the individual signatures rather than the response parts.
Provided an pre-existing sequential aggregate signature (R̃n−1, {s1, . . . , sn−1})
on messages m1, . . . , mn−1 under public keys X1, . . . , Xn−1, what the signer does
in SeqSign is basically producing a normal Schnorr signature. The difference is
what it hashes to get its challenge cn. Instead of its own commitment Rn = grn ,
it hashes the aggregate commitment R̃n = R̃n−1 ·Rn. It additionally hashes its
public key Xn, the response sn−1 from the last signer, and the current length n.

To verify an aggregate signature, the verifier sequentially recovers the indi-
vidual commitments from the n-th to the first one. Provided the aggregation of
j commitments R̃j , the verifier can compute cj . It then obtains Rj , the j-th indi-
vidual commitment, by Rj = gsj/X

cj
j . After that, it knows R̃j−1 and iteratively

continues the procedure.
As ASchnorr and IASchnorr do, SASchnorr achieves about half aggregation

in elliptic curve groups. On the other hand, the verification in SASchnorr is
similar to a sequence of individual verification. We cannot use simultaneous
multiplication techniques to accelerate the verification.

Note that in Fig. 4, we minimize what the signer needs to hash. As a result,
many inputs are irrelevant to the signing procedure. There are some potential
optimizations can be made in practice. For example, consider the scenario where
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a fixed destination is public known to all signers, and they do not care the
validity of the partial aggregations. A signer can choose to not pass redundant
information to the next one. Instead, the j-th signer can pass only R̃j and sj to
the next signer and directly pass Xj , mj , and sj to the destination. Thus, the
total communication complexity is significantly reduced.

For consistency, we require the first signer also hashes s0, which we define as
0, and the current length 1. This can be omitted without ambiguity.

5.2 A New Security Model for SAS Schemes

Rather than the security model presented in [19] and Section 2.2 for SAS schemes,
we analyze the security of SASchnorr in a modified model. There is no essential
difference between them. We just adapt the model to fit the fact that in our
scheme SASchnorr, algorithm SeqSign takes fewer inputs than the general syn-
tax of SAS schemes defined in [19] and Section 2.2. Hence, we still use the term
CK-SAEUF-CMA to denote the security notion.

Note that the signature produced by SeqSign only depends on xn, mn, and
part of σ̃n−1, i.e., R̃n−1 and sn−1. We only take them as the arguments of the
signing oracle. Precisely, the adversary can query Sign(R̃n−1, sn−1,mn, n) and
receive (R̃n, sn).

The adversary’s goal is to forge an aggregation (R̃n, {s1, . . . , sn}) on/under
corresponding messages/public keys m1, . . . , mn, pk1, . . . , pkn on its choice.
The adversary is said to win if the forgery is valid, and it has not queried
Sign(·, sk−1,mk, k) for some k such that Xk = X∗, where X∗ is the target
public key.

We make some comparisons between the new security model and the original
model defined in [19]. On the one hand, the adversary does not need to give a
valid aggregation in order to request a subsequent aggregation. Specifically, the
signing oracle cannot verify the validity of the previous aggregation, as it doesn’t
know the corresponding public keys and messages. In this aspect, our model
allows for a more powerful adversary. On the other hand, the success conditions
of the adversary in our model are also adjusted according to the change of the
signing oracle, which makes our model incomparable with the original one.

We underline that the reason why we introduce the new model is not that we
cannot achieve security in the original one. Actually, simpler designs can already
make the scheme secure in the original model. If we require each signer to verify
the previous aggreation, or we let cn be instead H(R̃n, X1, . . . , Xn,m1, . . . ,mn),
then our scheme can be proved secure in the original model. We introduce our
new security model for SAS schemes to show the possibility of signing without
knowing so much information. This feature allows essential bandwidth/storage
saving.

See the full version of this paper [7] for more discussion. In the full version,
we explain our model as a result of a three-step modification on the original
model, among which two steps strengthen the model and one weakens it. We
also explain how to prove the security of our scheme (with minor modifications
as mentioned above) in the original model.
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5.3 Security

We prove that the security of SASchnorr reduces to the EUF-CMA security
of Schnorr in the ROM, with only an additive security loss. Note that we can
directly reduce the security of SASchnorr to the DLP based on the forking lemma,
but we intentionally avoid doing so. Improving the proof techniques and finding
tighter bounds for Schnorr signatures in the ROM are popular research topics,
and some great results were achieved in a recent work [21]. We prove a relatively
modular result which is compatible with any previous or future improvements
on the security results for Schnorr.

Theorem 3. If there exists a forger that (t, qH, qS, N, ε)-breaks the CK-SAEUF-
CMA security of SASchnorr in the ROM, then there exists an algorithm that
(t′, qH + qS, qS, ε

′)-breaks the EUF-CMA security of Schnorr in the ROM, with

t′ ≤ t+ 2Ntexp +O(qS + qH)

and
ε′ ≥ ε− (qH + qS)(qH + 3qS)

2p
− (qH + qS + 1)2 + 1

2|H|
,

where texp is the time of an exponentiation in G.

We give some intuition before the actual proof. Let X∗ be the target public
key. In a valid forgery, there must exist a k ∈ {1, . . . , n} such that Xk = X∗,
and it holds that RkX

∗ck = gsk . The equality is in form of the verification of
an individual signature, so intuitively, we would like to take (Rk, sk) as a forged
Schnorr signature.

Let H and H′ denote the random oracles in the CK-SAEUF-CMA game
against SASchnorr and the EUF-CMA game against Schnorr, respectively. For
the reduction to win the latter game, it should hold that ck = H′(Rk,m

∗) for
some m∗. On the other hand, ck = H(R̃k,mk, X

∗, sk−1, k) in the former game.
Therefore, to use (Rk, sk) as its own forgery, the reduction has to find out Rk

when handling the forger’s hash query, given only R̃k.
The key point is to retrieve R̃k−1 with sk−1 (and then obtain Rk = R̃k/R̃k−1).

We do so by setting the exponent of the expected response sn as the index of
each query H(R̃n,mn, Xn, sn−1, n). It takes most of our effort to show this works.
Simply speaking, we present a mathematical induction: we can retrieve unique
R̃1 with s1; given that we can retrieve R̃i−1 with si−1, we can successfully figure
out Ri = R̃i/R̃i−1 and set the index of query H(R̃i,mi, Xi, si−1, i), and thus we
can retrieve R̃i with si.

Following Fig. 4, we define s0 as always 0. Moreover, we define R̃0 as 1G,
which simplifies the discussion a bit.

Proof (Theorem 3). Suppose F is the forger that breaks the CK-SAEUF-CMA
security of SASchnorr. We construct an algorithm A that breaks the EUF-CMA
security of Schnorr. In the EUF-CMA game, it has access to a signing oracle
Sign′, and the hash function is modeled as a random oracle H′.
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On target public key X∗, algorithmA first initializes an empty table T [·, ·, ·, ·, ·]
for simulating the random oracle H. Each table item may have an index I[·, ·, ·, ·, ·]
which is a group element. For any group element, A can efficiently locate the
table item with an index equal to the element. Algorithm A runs F with the
same target public key. It handles queries from F as follows:

– Hash queries. On a hash query H(R̃j , Xj ,mj , sj−1, j), algorithm A returns
T [R̃j , Xj ,mj , sj−1, j]. If the item is undefined, A first defines it as follows.
Algorithm A checks the following two conditions:
C1 Xj = X∗;
C2 j = 1; or among all defined items with the last arguments being j − 1,

there exists a unique one T [R̃j−1, Xj−1,mj−1, sj−2, j − 1] whose index
is gsj−1 .

If C2 is not true, A assigns c←$H to T [R̃j , Xj ,mj , sj−1, j]. If only C2 is
true, A additionally sets the index

I[R̃j , Xj ,mj , sj−1, j] = (R̃j/R̃j−1)X
c
j .

If both conditions hold, A instead assigns c = H′(R̃j/R̃j−1,m
∗), with m∗

uniformly chosen from {0, 1}log p, to T [R̃j , Xj ,mj , sj−1, j]. It sets the index
in the same way. We say A retrieves R̃j−1 here.

– Signing queries. To answer a signing query Sign(R̃n−1, sn−1,mn, n), A uni-
formly chooses m∗ from {0, 1}log p and queries m∗ to Sign′. It receives a
Schnorr signature (R, s) on m∗ under X∗. Let R̃n = R̃n−1 · R. Algorithm
A aborts if T [R̃n, X

∗,mn, sn−1, n] has been defined. Otherwise, A assigns
H′(R,m∗) to T [R̃n, X

∗,mn, sn−1, n]. It returns (R̃n, s) to F . It also checks
condition C2 defined above and sets index I[R̃n, X

∗,mn, sn−1, n] = gs if C2
is true.

At last, F outputs a forgery with messages and public keys it chooses:

{(X1,m1), . . . , (Xn,mn)}, (R̃n, {s1, . . . , sn}).

Algorithm A runs the verification procedure. Namely, for i = n, . . . , 2, it lets
ci = T [R̃i, Xi,mi, si−1, i] and then computes R̃i−1 = R̃i/(g

si/Xci
i ). It finally lets

c1 = T [R̃1, X1,m1, 0, 1] and determines whether the forgery is valid by checking
whether gs1 = R̃1X

c1
1 . In this verification procedure, A aborts if it meets an

undefined table item. This behavior is different from the verification algorithm
Vf, since the item would be defined now if we run Vf. However, we will later
show that the forgery is unlikely to be valid with such an undefined table item.

There must exist k ∈ {1, . . . , n} such that Xk = X∗, and F has not queried
Sign(·, sk−1,mk, k) for F to win the CK-SAEUF-CMA game. From the forgery’s
validity, we know

(R̃k/R̃k−1)X
∗ck = gsk ,

where ck = T [R̃k, X
∗,mk, sk−1, k]. If ck = H′(R̃k/R̃k−1,m

∗), and m∗ is fresh
in the EUF-CMA game (i.e., has not been queried to the signing oracle Sign′),
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then A wins the game with a forged signature (R̃k/R̃k−1, sk) on message m∗.
Our main task below is to prove this is exactly the case with high probability,
guaranteed by how A handles the queries from F .

To do so, we consider a list of events. We define them, explain how they relate
to A’s winning, and bound their probabilities. They are defined as follows:
E1 Algorithm A aborts when handling a signing query. We also use SimFail to

denote this event.
E2 Algorithm A chooses some duplicate random messages from {0, 1}log p. We

also use MsgCol to denote this event.
E3 Forger F succeeds. We also use AccF to denote this event.
E4 Algorithm A meets an undefined table item in the above verification proce-

dure we described. We also use UnDef to denote this event.
E5 When T [R̃k, X

∗,mk, sk−1, k] was defined, condition C2 was not true, or the
aggregate commitment that A retrieved was not R̃k−1.
As long as E3 happens while E2, E4, and E5 do not happen, A finds a

forged Schnorr signature (R̃k/R̃k−1, sk) on a fresh message m∗ (for the EUF-
CMA game) and wins. Excluding E2 guarantees the freshness of m∗, excluding
E4 guarantees A does not abort in the verification procedure, and excluding E5
guarantees ck was indeed set to H′(R̃k/R̃k−1,m

∗). If E1 and E2 do not happen,
then the simulated game is identical to the real CK-SAEUF-CMA game, and we
know E3 happens with probability at least ε on such a condition. Here we also
exclude E2 to avoid one hash value H′(R,m∗) being assigned to different table
items. Below we separately consider the probabilities of these events.

E1 For every signing query from F , R̃n to be returned is uniformly distributed
on a set of order p. This is because R̃n = R̃n−1 ·R with R uniformly distributed
on G, since R is the commitment of a Schnorr signature from Sign′. This R̃n may
collide with the at most qH + qS aggregate commitments occurring in T . Hence,
SimFail happens in every signing query with probability at most (qH + qS)/p. In
total, we have Pr[SimFail] ≤ qS(qH + qS)/p.

E2 Algorithm A needs to choose at most one message from {0, 1}log p for every
signing query and hash query from F . The total number of the chosen messages
is bounded by qH + qS, and it follows that Pr[MsgCol] ≤ (qH + qS)

2/(2p).

E4 To bound the probability of this event, we need Lemma 4 below. Note
that when one verifies a forgery with Vf, all the recursive calls return equal
values. Hence, as long as A meets an undefined table item, the probability of
the whole forgery’s validity is bounded by (qH + qS + 1)/|H|. Namely, we have
Pr[AccF |UnDef ] ≤ (qH + qS + 1)/|H|.

Lemma 4. For any {(X1,m1), . . . , (Xj ,mj)}, (R̃j , {s1, . . . , sj}), if table item
T [R̃j , Xj ,mj , sj−1, j] is undefined, then the probability that

Vf({(X1,m1), . . . , (Xj ,mj)}, (R̃j , {s1, . . . , sj})) = 1

is upper-bounded by (qH + qS + 1)/|H|.
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E5 We consider condition C2 in two aspects. First, it requires that there exists an
item T [R̃j−1, Xj−1,mj−1, sj−2, j− 1] with index being gsj−1 . Second, it requires
the item to be unique. Lemmas 5 and 6 relate to the uniqueness and existence
requirements respectively.
Lemma 5. Let qj be the number of defined entries in T with the last argument
being j. Define Dup as the event that there exist two different table items

T [R̃j , Xj ,mj , sj−1, j] and T [R̃′
j , X

′
j ,m

′
j , s

′
j−1, j]

with the last arguments being equal, such that

I[R̃j , Xj ,mj , sj−1, j] = I[R̃′
j , X

′
j ,m

′
j , s

′
j−1, j].

It holds that Pr[Dup] ≤ (
∑∞

i=1 q
2
i )/(2|H|).

Lemma 6. Let qj be the number of defined entries in T with the last argument
being j. Define BadOrder as the event that there exists a valid chain in T , namely
a set of items

c1 = T [R̃1, X1,m1, 0, 1], . . . , cj = T [R̃j , Xj ,mj , sj−1, j]

satisfying (R̃i/R̃i−1)X
ci
j = gsi for i = 1, . . . , j − 1, while these items were not

defined in order. It holds that Pr[BadOrder | ¬Dup ] ≤ (
∑∞

i=1 qiqi+1)/|H|.
We now show the link between E5 and these two lemmas. For a valid chain

described in Lemma 6, suppose the items in it are defined in order. We use an
induction to show the following statement is true for every item in the chain if
Dup does not happen: for the item T [R̃i, Xi,mi, si−1, i] in the chain, condition
C2 was true when it is defined, and A exactly retrieved R̃i−1 at that time.

For the first item in the chain, the statement is true directly from the def-
inition of C2, and its index is gs1 from the validity of the chain. Assume the
statement is true for the (i − 1)-th item, and its index is gsi−1 . When the i-th
item in the chain is going to be defined, the (i−1)-th has been defined. From the
assumption, the index of the (i− 1)-th item has been defined and equals gsi−1 .
That Dup does not happen guarantees there does not exist another item with
the last argument being i − 1 and equal index. Thus, condition C2 for the i-th
item holds, and A retrieves R̃i−1. The index of the i-th item is thus gsi from the
validity of the chain. This means that the statement is true for the i-th item. By
induction, the statement is true for every item in the chain.

Obviously, the forgery must correspond to a valid chain for it to be valid,
conditioned on that E4 does not happen. The above statement means that E5 is
impossible if none of BadOrder and Dup happen. The probability of E5 is hence
bounded by

Pr[Dup ∨ BadOrder] = Pr[Dup] + Pr[BadOrder | ¬Dup ]

≤
∑∞

i=1 q
2
i +

∑∞
i=1 2qiqi+1

2|H|

≤ (qH + qS)
2

2|H|
,
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where the last inequality follows from qH + qS =
∑∞

i=1 qi.
Put all these bounds together, and we have

ε′ ≥ Pr[AccF ∧ ¬MsgCol ∧ ¬UnDef ∧ ¬Dup ∧ ¬BadOrder]
≥ Pr[AccF ∧ ¬MsgCol]− Pr[UnDef]− Pr[Dup ∨ BadOrder]

≥ Pr[AccF ∧ ¬SimFail ∧ ¬MsgCol]

− Pr[AccF ∧ UnDef]− Pr[Dup ∨ BadOrder]

≥ Pr[AccF | ¬SimFail ∧ ¬MsgCol ] · Pr[¬SimFail ∧ ¬MsgCol]

− Pr[AccF ∧ UnDef]− Pr[Dup ∨ BadOrder]

≥ Pr[AccF | ¬SimFail ∧ ¬MsgCol ]− Pr[SimFail]− Pr[MsgCol]

− Pr[AccF |UnDef ]− Pr[Dup ∨ BadOrder]

≥ ε− (qH + qS)(qH + 3qS)

2p
− (qH + qS + 1)2 + 1

2|H|

It only remains for us to bound the running time of A. We assume a table
operation takes constant time with enough space and a hash table implemented
properly. We also assume retrieving a table item as described in condition C2 also
takes constant time with an index structure implemented properly. In total, the
time A spends on handling queries from F and maintaining table T is bounded
by O(qS + qH).

Note that A runs a verification procedure on F ’s forgery in order to obtain
R̃k/R̃k−1, the commitment part of its own forged Schnorr signature. This takes
at most 2N exponentiation operations. In conclusion, we have

t′ ≤ t+ 2Ntexp +O(qS + qH). ⊓⊔

We defer the proofs of Lemmas 4 to 6 to the full version of this paper [7].
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